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  Global warming is one of the most serious challenges the world faces today. Global warming causes drought, 
extreme weather, heat waves, and rising sea levels that disrupt ecosystems and harm people's livelihoods and com-
munities. Scientists believe that the main cause behind global warming is the greenhouse effect, which occurs when 
greenhouse gases trap heat in the Earth’s atmosphere. CO2 is the greenhouse gas that scientists agree is the biggest 
contributor to global warming. A CO2 concentration level above 500 ppm or a global temperature change of 1.5°C 
above pre-industrial levels indicates dangerous global warming, resulting in serious negative impacts on the envi-
ronment and human health such as increased crop failures and spread of vector-borne diseases. 

To better understand future global warming trends, we built several models to predict CO2 concentration levels 
and global temperatures, as well as to investigate the relationship between them. We first analyzed CO2 levels and 
found that March 2003, not March 2004 as claimed by National Oceanographic and Atmospheric Administration, 
resulted in the largest 10-year average increase up to that time. Then, to model CO2 concentration levels and forecast 
future CO2 level trends, we used Holt’s linear trend, Autoregressive Integrated (ARI), Integrated Moving Average 
(IMA), and Autoregressive Integrated Moving Average (ARIMA) models. All of our models predict that CO2 levels 
will not reach 685 ppm by 2050 but will reach at least 500 ppm by 2056. Based on model performance statistics, we 
found that ARI(8, 2) was the most accurate model, and it forecasts that CO2 levels will reach 500 ppm as early as 
2048. Our sensitivity analysis verified that the ARI(8,2) model is robust because its model performance is not greatly 
affected by the amount of data or using data from different months. 

To investigate the trend in global temperatures and forecast future global temperatures, we fit an ARIMA(3, 1, 
3) model on global annual mean temperature changes. Our model predicts that the global temperature will change 
1.5°C by 2052 and hence cross the threshold for dangerous global warming. 

We then explored the relationship between CO2 concentration levels and global temperatures. A Pearson’s cor-
relation coefficient of 0.96 suggests that a very strong positive relationship exists between them. In order to identify 
their temporal relationships, we analyzed multivariate time series data of CO2 and temperature using a Vector Auto-
regressive (VAR) model and Granger causality tests. After performing Granger causality tests on our VAR model, 
we found that there is a strong Granger causal relationship from CO2 levels to global temperatures and a weak 
Granger causal relationship from global temperatures to CO2 levels. This shows that CO2 and temperature are inter-
connected and that CO2 levels have a statistically significant influence on global temperatures. The final fitted 
VAR(5) model uses past values of both CO2 levels and global temperatures to forecast that in 2050, the CO2 level 
will be 512.85 ppm and the global temperature will change by 2.01°C, both indicating dangerous global warming. 
We determined that all predictions up to 2100 from VAR(5) should be reliable because of the narrow width of 
corresponding 95% confidence intervals. The concerns of our VAR(5) model include a small data size and that other 
factors besides temperature and CO2 levels were not considered in the model. Our sensitivity analysis confirmed that 
the model is effective with smaller data sizes, and the predictions of the model are robust and not greatly affected by 
changing the sampling frequency to monthly or adding in other factors such as CH4, N2O, and SF6. 

Based on our research and model results, we conclude that global warming will reach a dangerous level soon, 
likely by 2050. If we wish to prevent dangerous global warming, CO2 emissions will need to be greatly reduced, and 
the energy sector should be transformed to reduce emissions, such as replacing fossil fuels with renewable energy. 

Keywords: CO2, Global Warming, Holt’s Linear Trend, ARIMA, VAR, Granger Causality 
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Global Warming and Carbon Dioxide Levels 
Global warming has become increasingly serious over the past few decades, and with significantly increased 

temperatures, extreme weather, and droughts, climate change has greatly impacted many people’s lives. 
According to the United Nations, man-made greenhouse gas emissions are the primary cause of current cli-

mate trends. Greenhouse gases trap heat in the Earth’s atmosphere, resulting in the greenhouse effect and causing 
the climate to warm abruptly with rapid increases in these gases. With rapidly expanding industrialization around 
the world, global production of these greenhouse gases has increased significantly. In particular, carbon dioxide 
emissions, which account for around three quarters of all greenhouse gases in the atmosphere, have recently seen 
patterns of serious exponential growth. 

Using data from the National Oceanographic and Atmospheric Administration, our team created several 
models to forecast CO2 levels that all verified that CO2 levels will reach at least 500 ppm by 2056. A CO2 concen-
tration level of 500 ppm is well above 350 ppm, what scientists and government officials consider the safe level of 
carbon dioxide. CO2 is agreed to be the biggest contributor to global warming and such a large quantity of carbon 
dioxide would result in dangerous global warming. 

Another one of our models, created using temperature data from the National Aeronautics and Space Admin-
istration Goddard Institute for Space Studies, also verifies that global warming will reach dangerous levels soon. Our 
model predicts that the global temperature will change 1.5°C by 2052, crossing the threshold for dangerous global 
warming. Under the 2015 Paris Agreement, all countries agreed to try to limit global warming to 1.5°C compared to 
pre-industrial levels. However, if drastic actions are not taken soon, the current trend shows that this level will be 
reached by 2052. 

We created another model using both CO2 and temperature data in order to model the relationship between 
CO2 levels and global temperatures. This model captures the temporal dynamics between these two factors and 
forecasts that in 2050, the CO2 level will be 512.85 ppm and the global temperature will change by 2.01°C, both 
indicating dangerous global warming. 

All of our models provide evidence that global warming will reach dangerous levels soon, likely around 
2050, unless immediate measures to reduce greenhouse gas emissions are put into place. These rising temperatures 
would result in much more than just warmer weather. Sea levels will rise, and coastal cities will be at risk of flooding. 
Heat waves and extreme weather will occur more frequently. Increasing droughts with longer duration and greater 
intensity will threaten crops, wildlife, and freshwater supplies. From polar bears in the Arctic to marine turtles off 
the coast of Africa, biodiversity is at risk because of the changing climate and environment. 

As CO2 levels continue to rise, temperatures will only further increase, and steps must be made to reduce the 
already piling damages. With around 87 percent of human-produced CO2 emissions resulting from the burning of 
fossil fuels, adopting sources of alternative energy would decrease emissions significantly. 

Industries should switch their energy sources to using renewable energy, and solar, wind, hydroelectric, and nuclear power 
have all already seen safe and widespread usage. Public transportation and carpooling should be promoted to help reduce CO2 
emissions. Deforestation should be stopped, and we should work towards making agriculture more environmentally friendly 
and efficient. If we want to prevent dangerous global warming, effective measures like the ones we suggested need to be 
implemented immediately to reduce emissions of CO2 and other greenhouse gases.
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1 Introduction 

1.1 Problem Background 

Global warming is one of the most pressing issues in the world today [1]. Global warming poses a serious threat to 
ecosystems and livelihoods, and brings catastrophic weather conditions, among countless other consequences. For 
example, global warming causes sea levels to rise, resulting in saltwater intrusion that harms freshwater ecosystems. 
Heat waves caused by climate change can lead to water scarcity, drought, or wildfires, devastating both communities 
and ecosystems. Furthermore, these climate changes are expected to force over 200 million people to relocate by 
2050 [2]. 

Global warming is mainly caused by greenhouse gases, and carbon dioxide (CO2) is the primary greenhouse gas that 
contributes to global warming. CO2 is released through natural processes like volcanic eruptions as well as through 
human activities, such as the burning of fossil fuels and deforestation. Although human sources of carbon dioxide 
emissions are much smaller than natural emissions, they have upset the natural balance, and most of the increase in 
CO2 levels seen in the past decades can be attributed to human activities [3]. The primary human activity that con-
tributes to CO2 emissions is the burning of fossil fuels, which combines carbon with oxygen in the air to form CO2. 
Once released into the atmosphere, CO2 absorbs infrared energy from sunlight and emits it back as heat, greatly 
contributing to global warming if left in abundance. 

Therefore, when studying global warming and evaluating measures to slow climate change, it is essential to predict 
both future CO2 levels and temperature trends, as well as analyze the relationship between them. 

1.2 Restatement of the Problem 

Considering the background information and restricted conditions identified in the problem statement, we need to 
solve the following problems: 
= Examine the patterns in CO2 levels and forecast future CO2 levels. Specifically, our sub-objectives are:  

a) Check if we agree with the claim that the March 2004 increase in CO2 levels was the largest 10-year average 
increase observed over any previous 10-year period 

b) Use multiple models to examine CO2 patterns and forecast future CO2 levels until 2100, such as by which 
year the CO2 level will reach 685 ppm 

c) Find the most accurate model for CO2 level forecasting 
= Examine global temperature patterns and forecast future temperature changes until 2100 compared to the aver-

age land-ocean temperature from 1951-1980 
= Investigate the relationship between CO2 concentration levels and temperature with sub-objectives listed below: 

a) Build a model to describe the relationship and predict future CO2 levels and temperatures until 2100 
b) Review model reliability and concerns about forecasting accuracy 

1.3 Our work 

Our modeling process is shown as in Figure 1: 
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Figure 1: Our modeling process  
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2 Assumptions and Justifications 

To simplify the problem of modeling CO2 levels and temperature changes, we make the following assumptions. 

Assumption 1: CO2 and temperature levels are predictable. 
Justification: Although unpredictable factors can be introduced in the future, we assume that changes in the 
environment will be gradual and will not drastically change the pattern of CO2 or temperature levels. Extreme 
situations that drastically change CO2 levels or global temperatures have a very small probability of occurring. 
Therefore, previous data would have autocorrelation with future CO2 levels or temperatures, and models based 
on past CO2 levels or past temperatures can be used to accurately forecast the future. 

Assumption 2: The CO2 levels data and temperature data used to fit the models are accurate. 
Justification: The CO2 levels data used come from the National Oceanographic and Atmospheric Administra-
tion (NOAA), which is a federal agency focused on the condition of the oceans and the atmosphere. The tem-
perature data used comes from the National Aeronautics and Space Administration Goddard Institute for Space 
Studies (NASA GISS), which is an institute that conducts research in astrophysics, planetary atmospheres, and 
the climate. These institutions are very prestigious, and the data they collect are usually thoroughly inspected 
and very accurate. 

Assumption 3: The variation in annual March averages of CO2 levels can represent yearly variation in CO2 
levels. 

Justification: The amount of CO2 found in the atmosphere varies over the course of a year mainly because of 
the role of plants in the carbon cycle [4]. During spring and summer in the Northern Hemisphere, which has a 
greater land mass than the Southern Hemisphere, plants take up more carbon dioxide through photosynthesis 
than they release through respiration, leading to a decrease in CO2 levels. However, yearly variation is typically 
the same from month to month because CO2 level changes caused by plants are in an annual cycle. Therefore, 
variation in annual March averages of CO2 levels can represent yearly variation, allowing predictions made by 
models fitted on annual March averages of CO2 levels to be generalized to the entire year. 

Assumption 4: The relationship between CO2 levels and temperature does not change over time. 
Justification: Adding more CO2 to the atmosphere will always cause surface temperatures to rise [5]. Although 
the addition of extra CO2 in the atmosphere gradually becomes less effective at trapping energy, temperature 
will still rise, and CO2 levels must be very high for there to be a noticeable decrease in the rate of warming. 

3 CO2 Concentration Levels Data 

We used CO2 Data Set 1 to analyze changes in CO2 levels over 
time and fit models for predicting future levels of CO2 in the 
atmosphere. The CO2 Data Set 1 is a time series dataset that 
recorded annual March averages of CO2 levels from 1958 to 
2021, ranging from 315.98 to 416.45 ppm with a mean value 
of 357. 34 ppm and standard deviation of 29.85 ppm. As shown 

Figure 2: Time series plot of CO2 Concentration    
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in Figure 2, CO2 levels clearly have an increasing pattern over time.  

We calculated the 10-year average increase in CO2 concentration levels using the Compound Annual Growth Rate 
(CAGR) Formula as follows [6]: 

𝐶𝐴𝐺𝑅 = &
𝐸𝑉
𝐵𝑉*

!/#

− 1 = 	&
𝐸𝑉
𝐵𝑉*

!
!$
− 1, 

where EV = the ending value, BV = the beginning value and n = the number of years. 

After analyzing the 10-year average increases in CO2 levels between 1969 and 2004, we concluded that March 2003, 
not March 2004, resulted in a larger increase than observed over any previous 10-year period. In 2003, the 10-year 
average increase was 0.513%, while in 2004, it was 0.510%, as shown in Figure 3. Therefore, March 2003 resulted 
in the largest 10-year average increase in CO2 levels compared to previous years, and we disagree with NOAA 
that the March 2004 increase of CO2 was the largest increase up to that time. 

 
Figure 3: 10-year average increase in CO2 Concentration (1969 to 2004) 

4 Univariate Time Series Models  

In this section, we introduce the univariate time series models that we use to model CO2 concentration levels and 
global temperatures. These models describe past data and predict future values of a univariate time series, which is 
a set of observations of a variable recorded over time with equal time increments. When considering which models 
to use, we eliminated the possibility of using machine learning methods, such as neural networks and long short-
term memory (LSTM) methods, because the small amount of data we had would result in poor accuracy. 

We decided to use the following four models to forecast CO2 levels: 
• Holt’s linear trend 
• Autoregressive Integrated (ARI) model  
• Integrated Moving Average (IMA) model 
• Autoregressive Integrated Moving Average (ARIMA) model 
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4.1 Holt’s Linear Trend Model 

Holt's linear trend method is a popular exponential smoothing model for forecasting data with a trend [7]. Holt's linear 
trend method continually revises a forecast based on recent data. Exponentially decreasing weights are assigned to 
data as they get older, resulting in recent data having more weight in forecasting than older data. Holt’s linear trend 
method also results in the smoothing of random variability in the data. There are three equations used in the process: 
the first equation for smoothing the time series, the second equation for smoothing trend, and the third equation is a 
combination of the other two equations and used for forecasting. Two parameters are used: one for overall smoothing 
and the other for trend smoothing. 

The equations to describe  𝑦% , the value of the time series at time 𝑡 are defined as: 

Level equation          𝑙% = a𝑦% + (1 − a)(𝑙%&! + 𝑏%&!) 

Trend equation         𝑏% = 𝛽(𝑙% − 𝑙%&!) + (1 − 𝛽)𝑏%&! 

Forecast equation     𝑦7%'(|% = 𝑙% + ℎ𝑏%, 

where 𝑦7%'(|% is the forecast for the value of the time series at time 𝑡 + ℎ, 𝑙% is the estimate of the level of the time 
series at time 𝑡, 𝑏% is the estimate of the trend of the time series at time 𝑡, 𝛼 is the smoothing parameter for the level 
(0 ≤ 𝛼 ≤ 1), and 𝛽 is the smoothing parameter for the trend (0 ≤ 𝛽 ≤ 1) 

4.2 ARI, IMA, and ARIMA Models 

In this section, we introduce information on ARIMA models, as well as ARI and IMA models, which can be viewed 
as a subset of ARIMA models [8].  

4.2.1 Stationarity 

A stationary time series is a time series where the mean, standard deviation, and covariance do not vary with time. 
Stationarity means that the process generating the time series does not change over time. Stationarity is an assump-
tion in many time series models because models predict stationary series more effectively. 

Augmented Dickey Fuller Test 

Augmented Dickey Fuller test (ADF test) is a statistical test used to test whether a time series is stationary. ADF test 
is a unit root test that tests the null hypothesis that a unit root, a characteristic that makes a time series non-stationary, 
is present in a time series. 

Differencing 

A non-stationary time series can be made stationary through differencing, which is computing the differences be-
tween consecutive time periods. For example, one order differencing for 	𝑦%  is 	𝑦% − 𝑦%&! . The time series is differ-
enced until it is stationary, which can be determined using the ADF test. 

4.2.2 Autoregressive Integrated Model 

An Autoregressive Integrated model, or ARI, is a time series model that uses past data to predict future values of a 
time series. An ARI model can be denoted as 𝐴𝑅𝐼(𝑝, 𝑑) where 𝑝 is the autoregressive order and 𝑑 is the order of 
differencing. 
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𝐴𝑅𝐼	(𝑝, 𝑑) for 	𝑦%  can be expressed as 

𝑦%* = 𝑐 + 𝜙!𝑦%&!* + 𝜙+𝑦%&+* +⋯+ 𝜙,𝑦%&,* + 𝜀%, 

where 𝑐 is a constant, 𝜙!, 𝜙+, … , 𝜙, are autoregressive coefficients, 𝜀% is the error term at time 𝑡 (generally assumed 
to be white noise), and 𝑦%* is the value of the 𝑑-order differenced time series at time 𝑡. 

4.2.3 Integrated Moving Average Model 

An Integrated Moving Average model, or IMA, is a time series model that uses past forecast errors to predict future 
values of a time series. An IMA model can be denoted as 𝐼𝑀𝐴	(𝑑, 𝑞) where 𝑑 is the order of differencing and 𝑞 is 
the moving average order. 

𝐼𝑀𝐴	(𝑑, 𝑞) for 	𝑦%  can be expressed as 

𝑦%* = 𝑐 + 𝜀% + 𝜃!𝜀%&! + 𝜃+𝜀%&+ +⋯+ 𝜃-𝜀%&-, 
where 𝑐 is a constant, 𝜃!, 𝜃+, … , 𝜃- are moving average coefficients, 𝜀%,… , 𝜀%&-, are the error terms at time 𝑡, … , 𝑡 −
𝑞 and 𝑦%* is the value of the 𝑑-order differenced time series at time 𝑡. 

4.2.4 Autoregressive Integrated Moving Average Model 

An Autoregressive Integrated Moving Average model, or ARIMA, is a time series model that combines the ARI 
model and IMA model into one model. ARIMA uses both past data and forecast errors to predict future values of a 
time series. An ARIMA model can be denoted as 𝐴𝑅𝐼𝑀𝐴	(𝑝, 𝑑, 𝑞) where 𝑝 is the autoregressive order, 𝑑 is the order 
of differencing, and 𝑞 is the moving average order. 

𝐴𝑅𝐼𝑀𝐴	(𝑝, 𝑑, 𝑞) for 	𝑦%  can be expressed as 

𝑦%* = 𝑐 + 𝜙!𝑦%&!* +⋯+ 𝜙,𝑦%&,* + 𝜃!𝜀%&! +⋯+ 𝜃-𝜀%&- + 𝜀%, 

where 𝑐 is a constant,  𝜙!, 𝜙+, … , 𝜙, are autoregressive coefficients, 𝜃!, 𝜃+, … , 𝜃- are moving average coefficients, 
𝜀%,… , 𝜀%&-, are the error terms at time 𝑡, … , 𝑡 − 𝑞, and 𝑦%* is the value of the 𝑑-order differenced time series at time 
𝑡. 

4.3 Evaluation of the model performance  

Popularly used model performance measures are listed in Table 1 [8]. A model with high forecasting accuracy would 
be one with small RMSE, MAPE, MAE, and BIC and a high stationary R-squared and 𝑝-value for Ljung-Box Test. 
In this report, we used SPSS v29.0 for fitting these univariate time series models and calculating these measures. 
Statistical significance is set at 𝑝-value < 0.05. 

Table 1: Statistics for Fitness of models 

Statistic Abbreviation Optimal Range 
Stationary R-squared  Higher values 

Root Mean Square Error RMSE Lower values 
Mean Absolute Percentage Error MAPE Lower values 

Mean Absolute Error MAE Lower values 
Bayesian Information Criterion BIC Lower values 
𝑝-value for Ljung-Box Test  Higher values 
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5 Models for Forecasting CO2 Levels 

To predict future levels of CO2 in the atmosphere, we fit the univariate time series models described above on the 
CO2 Data Set 1. 

5.1 Holt’s Linear Trend 

We fit Holt’s linear trend model on the CO2 Data Set 1 and found a to be 0.968 and b to be 0.224. 

Table 2: Parameter estimation results for Holt’s linear trend model 

Parameter Estimate Standard Error T-value 𝒑-value 

a 0.968 0.128 7.543 < 0.001 

b 0.224 0.099 2.252 0.028 

Because the 𝑝-values for the model parameters are less than 0.05, each term in our model is statistically significant, 
indicating the validity of our model. 

We also analyzed the autocorrelation and partial autocorrelation plots 
(Figure 4) of the residuals to check the validity of our model. Because 
the ACF and PACF plots indicate that most of the lags fall within the 
95% confidence interval, the residuals appear to be mostly white 
noise, indicating that the model fit is appropriate. 

Our model can then be expressed as: 

			𝑙% = 0.968𝑦% + 0.032𝑙%&! + 0.032𝑏%&!, 

			𝑏% = 0.224𝑙% − 0.223𝑙%&! + 0.776𝑏%&!, 

				𝑦P%'(|% = 𝑙% + ℎ𝑏%,                                                                                      Figure 4: Residual ACF and PACF plots                  

where 𝑦7%'(|% is the forecast for the value of the time series at time 𝑡 + ℎ,  𝑙% is the estimate of the level of the time 
series at time 𝑡, 𝑏% is the estimate of the trend of the time series at time 𝑡 and 𝑦% is the value of the time series at time 
𝑡. 

5.2 ARI, IMA, and ARIMA Models 

We then fit ARI, IMA, and ARIMA models on the CO2 Data Set 1. Because the data of the CO2 levels was not 
stationary, we differenced the data twice until stationarity was reached, as tested by the ADF test. 

Once the stationary assumption of the models was satisfied, we found the optimal parameters for each of the three 
models and then analyzed the ACF and PACF plots of the residuals to check model validity. For all the models, the 
lags are within the 95% confidence interval, indicating that there is no remaining pattern. Additionally, the 𝑝-values 
from the Ljung-Box test on the residuals of the three models are all much greater than 0.05, validating the model 
assumption that the residuals are not autocorrelated and therefore indicating that the model fit is appropriate. The 
final models found are ARI(8, 2), IMA(2, 8), and ARIMA(3, 2, 3). 
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Figure 5: Second difference plot of annual March averages of CO2 levels 

                             
                ARI(8,2)                 IMA(2, 8)                   ARIMA(3, 2, 3) 

Figure 6: Residual ACF and PACF plots for ARI(8,2), IMA(2,8) and ARIMA(3, 2, 3) 

5.3 Forecasting 

Once we fit Holt’s linear trend, ARI, IMA, and ARIMA models on the CO2 levels data, we then used these models 
to forecast future CO2 levels as shown in Figure 7. Table 3 reports the forecasted CO2 levels in 2050, 2075, and 
2100, along with their corresponding 95% confidence intervals. 

Table 3: Model predictions 

Model Year Predicted CO2 level (ppm) Lower 95% Confi-
dence Limit 

Upper 95% Con-
fidence Limit 

Holt’s Linear Method 2050 486.89 463.46 510.13 
2075 547.43 492.99 601.87 
2100 608.06 514.84 701.28 

ARI(8,2) 2050 508.95 499.51 518.38 
2075 611.44 589.32 633.56 
2100 736.21 698.25 774.17 

IMA(2,8) 2050 513.16 503.63 522.86 
2075 639.74 622.14 657.7 
2100 828.15 799.38 857.7 

ARIMA(3,2,3) 2050 511.76 502.95 520.69 
2075 635.78 618.75 653.17 
2100 819.09 789.44 849.56 

                               



Team # 12911                                                                              Page 12 of 24 

 

(1)                                                                                    (2) 

                                              (3)                                                                                    (4) 

 
                                                       (5) 

 

       Figure 7: Forecasting plots - (1) Holt’s linear trend (2) ARI (3) IMA, and (4) ARIMA models on the CO2      
                        levels data, and (5) Four models combined 

We found that none of our models agreed with the Organization for Economic Co-Operations and Develop-
ment (OECD) that CO2 levels will reach 685 ppm by 2050 [9]. Holt’s linear trend predicted that CO2 levels will 
reach 685 ppm by 2132, ARI(8, 2) predicted by 2091, IMA(2, 8) predicted by 2082, and ARIMA(3, 2, 3) by 2083. 
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The results from our models might differ from the findings of the OECD because we only considered data on CO2 
levels while the OECD also considered other factors, such as energy demand, that would affect CO2 levels. As well, 
the statement made by the OECD that CO2 levels will reach 685 ppm by 2050 was made based on data earlier than 
2012. There are likely new patterns in the data we used, which included data up to 2021, resulting in our models 
predicting different patterns from the OECD. 

5.4 Most Accurate Model 

Table 4: Comparison of Model Statistics 

Model 
Stationary 
R-squared 

RMSE MAPE MAE 
Normalized 

BIC 

Holt’s linear trend 0.388 0.494 0.101 0.363 -1.28 

ARI(8, 2) 0.8 0.318 0.066 0.232 -1.417 

IMA(2, 8) 0.555 0.453 0.089 0.316 -0.977 

ARIMA(3, 2, 3) 0.632 0.412 0.086 0.307 -1.233 

*All the 𝑝-values from the Ljung-Box test were well above 0.05. 

Comparing the time series models we used using the model performance measures in Table 4, we found that all the 
ARI(8, 2) model’s statistics were better than the other models. We therefore concluded that ARI(8, 2) is the best fit 
for the CO2 Data Set 1 and is expected to have the best forecasting accuracy. 

5.5 Sensitivity Analysis 

5.5.1 Sensitivity Analysis on Data Size 

To judge the robustness of the ARI(8, 2) model, we 
explored the effect that data size has on the perfor-
mance of the model in forecasting CO2 prediction. 
The data we used to fit the model on only has 63 
years of data, which is considered relatively small. 
Less data to fit on often decreases model perfor-
mance, and we therefore run the ARI(8, 2) model 
on less data than before to analyze the impact on 
model performance. 

As shown in Figure 8, as the amount of data is de-
creased from 63 time points to 54, there is a slight 
increase in model error. However, RMSE does not 
increase by a significant amount and we therefore 
determined that the ARI(8, 2) model still has high  

  Figure 8: RMSE of ARI model using different dataset size   performance when the amount of data is decreased  
                                                                                                        by up to 15%. 
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5.5.2 Sensitivity Analysis on Alternate Month Data  

We fit the ARI(8, 2) model on annual March averages of CO2 levels using Assumption 2 in section 2. To check if 
the ARI(8, 2) model fitted on annual March averages also describes the patterns in CO2 levels from other months 
well, we fit this model using data obtained from NOAA on August averages of CO2 levels, which represents a 
different season from March. 

Table 5: Comparison of Model statistics for annual March vs August averages of CO2 levels 

Dataset  
Stationary 
R-squared 

RMSE MAPE MAE 
Normalized 
BIC 

Annual March averages 0.8 0.318 0.066 0.232 -1.417 

Annual August averages 0.736 0.554 0.116 0.413 -0.458 

When fitting ARI(8, 2) on annual August averages, the model performance is still satisfying. The performance sta-
tistics of this model is not much different from the model using annual March averages of CO2 levels. Therefore, we 
conclude that using data from a different month has little impact on the ARI(8, 2) model performance. 

 
Figure 9: CO2 Level Prediction by ARI(8, 2) using annual March vs August data 

5.6 Model Strengths and Weaknesses  

Model Strengths 

1. The ARI(8, 2) model can account for non-stationary patterns. 
2. The ARI(8, 2) model only requires univariate time series data to predict future values and can forecast without 

information on other factors. 
3. The ARI(8, 2) model typically has powerful short-term prediction abilities. 
4. The ARI(8, 2) model is computationally inexpensive, and future predictions and confidence levels can be 

easily obtained. 
5. The sensitivity analysis of the model demonstrates its effectiveness with different amounts of data and alter-

nate annual month data, proving the robustness of the model. 
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Model Weaknesses 

1. The ARI(8, 2) model loses accuracy for long-term forecasting because the model is dependent on the accu-
racy of previous values. 

2. The forecasting accuracy of the ARI(8, 2) model depends on the reliability of historical data and on future 
conditions being similar to the conditions at the time of the data used. 

3. No other factors, such as energy demand, that affect CO2 levels were considered in predicting CO2 levels in 
our model. 

6 Model for Forecasting Temperature Changes 

To analyze temperature changes and predict future land-ocean temperatures, we fit a univariate time series model on 
global annual mean land-ocean temperatures. 

We used Temps Data Set 2 to fit a model for predicting future temperature changes. Temps Data Set 2 is a time 
series dataset of global annual mean land-ocean temperature changes from 1958 to 2021 compared to the average 
temperature from 1951 to 1980. This dataset ranges from -0.2°C to 1.02°C and has a mean temperature change of 
0.35°C and standard deviation of 0.32°C. The global mean land-ocean temperature is increasing overall with time 
as shown in Figure 10. 

 
Figure 10: Time series plot of Temperature Change                     Figure 11: First difference plot of  
                                                                                                                      Temperature Change       

We chose to use an ARIMA model for forecasting temperature changes after comparing the performance of Holt’s 
linear trend, ARI, IMA, and ARIMA models in temperature forecasting. To build the model, we first differenced the 
temperature data once to reach stationarity (as shown in Figure 11), as tested by the ADF test. 

Once the stationarity assumption of the models was satisfied, we found the optimal parameters for the ARIMA model 
and then analyzed the ACF and PACF plots of the residuals shown in Figure 12 to check model validity. All the lags 
are within the 95% confidence interval, as shown in the ACF and PACF plots, and the 𝑝-value for the Ljung-Box 
test on the residuals is much greater than 0.05, indicating that the assumption that the residuals are not autocorrelated 
is not violated. Other model performance measures shown in Table 5 suggest that the model describes this tempera-
ture time series well. The final model found is ARIMA(3, 1, 3). 
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Table 5: ARIMA(3, 1, 3) Statistics 
Stationary R-

squared RMSE MAPE MAE Normalized BIC 

0.535 0.085 52.095 0.067 -4.398 

 
Figure 12: Residual ACF and PACF                Figure 13: Forecasting of ARIMA models  
                 plots for ARIMA                                                      on the Temperature data                                                                                                        
We then used our ARIMA(3, 1, 3) model to forecast future land-ocean temperature changes as shown in Figure 13.  
According to our model’s predictions, the average land-ocean temperature will change by 1.25°C in 2038, 1.5°C in 
2052, and 2°C in 2081 when compared to the average temperature from 1951 to 1980. Our predictions show that 
the threshold for dangerous global warming will likely be crossed by 2052, resulting in serious negative impacts on 
the environment and human health. 

7 Relationship between CO2 and Temperature 

Many scientists think that there is a relationship between 
warming global temperatures and the concentration of 
CO2 in the atmosphere. CO2 is known to be a major con-
tributor to global warming and the primary greenhouse 
gas emitted by human activities. According to observa-
tions by the NOAA Global Monitoring Lab, carbon diox-
ide was responsible for about two-thirds of the total heat-
ing influence of all human-produced greenhouse gases in 
2021. On the other hand, scientists say that temperature 
also affects CO2 levels, but human activities contribute to 
most of the increase in CO2 levels. Rising temperatures  
result in warming oceans that release CO2 into the 

Figure 14: Time series plots (CO2 vs Temperature) 
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atmosphere because CO2 becomes less soluble in warmer water. Warmer temperatures also result in the release of 
carbon stored in permafrost and increase the frequency of wildfires, which also release CO2. Figure 14 clearly implies 
that CO2 levels and temperature co-vary over time and appear to have a positive relationship. 

To analyze the relationship between CO2 levels and temperature, we first examine the overall relationship through 
Pearson’s correlation. Then, to forecast the future and explore the possible intercausal relationship between CO2 
levels and temperature, we build a Vector Autoregression (VAR) model, which can discover key temporal relation-
ships in multivariate time series data. 

7.1 Pearson Correlation 

The Pearson correlation measures the strength and direction of the linear relationship between two variables. The 
Pearson correlation coefficient (𝑟) has a value between -1 and 1, with a value of -1 meaning a perfect negative linear 
correlation, 0 being no linear correlation, and 1 meaning a perfect positive correlation. 

We normalized the CO2 levels data and temperature changes data to meet the normality assumption and then calcu-
lated 𝑟 to be 0.96, indicating that CO2 levels and temperature have a very strong positive correlation. 

 
Figure 15: Scatterplot of Temperature vs CO2                    Figure 16: Rolling Window Correlation 

We also examined local synchrony using Pearson correlation by measuring the Pearson correlation for a small por-
tion of the data and repeating this process along a rolling window until all the data had been examined. As shown 
in Figure 16, when the amount of data used is 30 or 40 time points, 𝑟 already exceeds 0.9, showing that there’s a 
strong positive correlation between CO2 levels and temperature even over small timespans. 

7.2 Vector Autoregression Model 

A Vector Autoregression model, or VAR, is a multivariate time series model that is used when two or more time 
series influence each other [8]. The VAR model can explain relationships among multiple variables over time and 
predict future observations. The model predicts future values of a time series using past values of the time series 
along with other related time series. A VAR model can be denoted as 𝑉𝐴𝑅	(𝑝) where 𝑝 is the lag order. 

A 2-dimensional 𝑉𝐴𝑅	(5), which we use to analyze the relationship between CO2 (𝑦!) and temperature (𝑦+), can be 
expressed as 

𝑦!,% = 𝑐! + (𝜙!!,!𝑦!,%&! +⋯+ 𝜙!!,/𝑦!,%&/) + (𝜙!+,!𝑦+,%&! +…+ 	𝜙!+,/𝑦+,%&/) + 𝜀!,% 

𝑦+,% = 𝑐+ + (𝜙+!,!𝑦!,%&! +⋯+ 𝜙+!,/𝑦!,%&/) + (𝜙++,!𝑦+,%&! +⋯+ 𝜙++,/𝑦+,%&/) + 𝜀+,% 
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where 𝑐! and 𝑐+ are constants, 𝜙01,2 represents a coefficient, 𝜀!,% and 𝜀+,%	are error terms, and 𝑦!,% and 𝑦+,%  are the 
values of the time series 𝑦! and 𝑦+ at time 𝑡. 

7.2.1 Granger Causality Test 

The Granger causality test is a statistical hypothesis test that is performed within the framework of the VAR model 
[8]. The Granger causality test helps analyze the relationship between time series in the data. This test determines 
whether one time series is useful in forecasting another by testing whether values of one variable X provide statisti-
cally significant information about the future values of another variable Y. Granger causality is based on the notion 
that causes precede and help predict their effects. X is said to Granger-cause Y if the VAR model for Y using past 
values of X is significantly more accurate than the VAR model for Y without X. The Granger causality test uses F-
statistic tests to test if the coefficients of all lags of X are equal to zero in the VAR model for Y. If the null hypothesis 
that all the coefficients of X equal zero is rejected, the Granger causality test concludes that X Granger-causes Y, 
and past values of X can help explain Y. 

7.2.2 Modeling Steps 

The following steps can be applied to fit a time series to a VAR model: 
1. If any of the time series in the data is non-stationary, the data needs to be differenced until stationary before 

fitting a VAR model to the data. Stationarity is tested using the ADF test. 
2. Find the optimal value for the lag order 𝑝 by fitting 𝑉𝐴𝑅	(𝑝) models on various values of 𝑝 and then select-

ing the value of 𝑝 associated with the minimum BIC. 
3. Examine the residuals and statistical parameters of the VAR model to determine the validity of the model. 
4. Perform Granger’s causality test to further confirm that all time series in the data significantly contribute to 

better model fitting. Granger’s causality test is also used to analyze the relationship between time series in 
the data. 

5. Invert the transformation of the data in the VAR model to return the data to its original scale. Each difference 
done to the original data needs to be inverted. 

6. Forecast future time series using the model. 

7.3 Model for Relationship between CO2 and Temperature 

We built a VAR model to model the relationship between CO2 levels and temperature. To build our model, we first 
differenced the data until it was stationary, as tested by the ADF test, and then found the lag order 𝑝 by varying 𝑝 
and choosing the model with the best normalized BIC. The model we selected to model the relationship between 
CO2 levels and temperature was VAR(5). Specifically, VAR(5) shows the following relationship between CO2 (𝑦!)  
and temperature (𝑦+): 

𝑦!,% = −18.18 + 0.81𝑦!,%&! + 0.16𝑦!,%&+ + 0.16𝑦!,%&3 + 0.16𝑦!,%&4 − 0.24𝑦!,%&/ 

+0.86𝑦+,%&! − 2.26𝑦+,%&+ − 0.70𝑦+,%&3 − 1.13𝑦+,%&4 − 0.91𝑦+,%&/ 

𝑦+,% = −6.04 − 0.03𝑦!,%&! + 0.06𝑦!,%&+ + 0.02𝑦!,%&3 + 0.02𝑦!,%&4 − 0.05𝑦!,%&/ 

+0.25𝑦+,%&! − 0.26𝑦+,%&+ − 0.26𝑦+,%&3 − 0.08𝑦+,%&4 − 0.36𝑦+,%&/, 
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The fit statistics for VAR(5) model suggest that it models both temperature and CO2 levels well, with both BIC 
values being very low. 

Table 6: Fit Statistics 
Predicted time se-

ries RMSE RMSPE  BIC R-
Squared 

CO2 level 0.41 0.00 -70.36 1.00 
Temperature 0.08 0.97 -256.79 0.95 

We then performed Granger causality tests using our model to further examine the temporal causal relationship 
between CO2 levels and temperature. 

Table 7: Granger causality tests results 

Output Series Input Series 𝑝-value for Granger causality 

CO2 levels CO2 levels 0 
 Global temperatures 0.011 

Global temperatures CO2 levels 1.033E-5 
 Global temperatures 0.021 

The Granger causality tests show that when predicting CO2 levels, past CO2 levels are the most significant predictor 
(𝑝-value = 0) while past temperatures contribute less to the prediction (𝑝-value = 0.011). However, when predicting 
global temperatures, past CO2 levels are more important in prediction (𝑝-value = 1.033E-5) than temperature itself 
(𝑝-value = 0.021). Therefore, there is strong Granger causality from CO2 levels to global temperatures, but weak 
Granger causality in the opposite direction. These results indicate that CO2 levels and global temperatures both 
influence the other, but CO2 levels have a greater effect on temperature than temperature does on CO2 levels. 

7.3.1 Forecasting using VAR(5) 

Using our VAR(5) model, we forecast future CO2 levels and global temperatures until 2100.  

 

                  Figure 17: Future CO2 levels and global temperatures forecasting till 2100 using VAR(5) 

The predictions from VAR(5) should be reliable because the model has good fit statistics and small confidence 
intervals for the forecast. As well, the model considers the mutual influence between CO2 and temperature. After 
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analyzing our predictions up to 2100, we believe that our model is reliable up to 2100 because we have a small 
margin of error for all the predictions. The 95% confidence intervals shown in Table 8 suggested that we are 95% 
confident that the predicted temperature should be within 0.395°C of the actual temperature up to 2100, and the 
predicted CO2 level should be within 3.055 ppm of the actual CO2 level up to 2100. 

Table 8: Predicted  CO2 level  and global temperature change in years 2050, 2075 and 2100 using VAR(5) 

Time Series Year Prediction Lower 95% confidence 
limit 

Upper 95% confidence 
limit 

CO2 level 2050 512.85 510.14 515.55 
 2075 640.56 637.58 643.54 

 2100 831.36 828.31 834.42 
Global temperature 2050 2.01 1.66 2.36 

 2075 3.37 2.99 3.76 
 2100 5.41 5.01 5.8 

7.4 Sensitivity Analysis 

The amount of data used to fit VAR(5), 63 time points, is relatively small. More historical data results in better model 
performance because the model coefficients are better optimized to model the relationship between CO2 levels and 
temperature. In addition, our VAR model does not consider other factors besides CO2 levels and global temperatures. 
Other variables that influence CO2 levels and temperature would provide more information and increase forecasting 
accuracy. To evaluate the seriousness of these concerns that we have with our model, we performed several sensi-
tivity analyses. 

7.4.1 Sensitivity Analysis on Data Size 

To verify that our model performance is not greatly affected by data size, we explored the effect that data size has 
on the RMSE and BIC of VAR(5). 

 
Figure 18:  BIC and RMSE of VAR(5) for different data size 

As shown in Figure 18, as the amount of data is decreased from 63 time points to 43, RMSE and BIC worsens 
slightly. However, RMSE and BIC both do not worsen significantly, and model performance is still high. Therefore, 
we determined that it has little impact on our model performance when the data size decreases within a range, and 
concerns over the amount of data available are not major. 
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We also tested how Granger causal relationships in the model were affected by data size. To test the effect of data 
size on Granger causation, we fit the VAR(5) model on different amounts of data and examined the 𝑝-values from 
the Granger causation tests. We found that the 𝑝-value of the Granger causation test for CO2 levels predicting tem-
perature remained zero when the data size was from 63 to 56 time points and was 0.001 when the data size was from 
55 to 43 time points. This shows that even with a smaller timespan, there is always strong Granger causality from 
CO2 levels to temperature. 

However, the 𝑝-value of the Granger causation test for temperature predicting CO2 levels is greater than an alpha 
level of 0.05 when the data size is decreased to 59 time points. Therefore, there was not enough evidence to support 
the weak Granger causation from temperature to CO2 levels when the data size is decreased by 4. 

Table 9: 𝒑-value of the Granger causation test for temperature predicting CO2 

Data size 63 62 61 60 59 

𝑝-value 0.011   0.017     0.048     0.048    0.066   
 

Therefore, data size has little influence on the strong Granger causation from CO2 levels to temperature, and a data 
with size greater than 59 time points still preserves the weak Granger causation from temperature to CO2 levels. 

7.4.2 Sensitivity Analysis on Sampling Frequency 

When our model was built, we fit the model on yearly data from 1959 to 2021. However, using monthly data provides 
more data as well as information on seasonal patterns. We fit VAR(5) on monthly data of CO2 levels and global 
land-ocean temperatures from 1959 to 2021 obtained from NOAA[10]  and NASA GISS[11] to verify that changing 
the sampling frequency does not affect our model prediction. Using the model fit on monthly data, we found that in 
2029, the CO2 level was predicted to be 431.3 ppm, which is very close to the 438.8 ppm predicted by the model fit 
on yearly data, and temperature was predicted to be 1.12°C, which is very close to the 1.2°C predicted by the model 
fit on yearly data. Therefore, because the predictions by the model fit on monthly data and the model fit on yearly 
data are similar, we determined that our model fit on yearly data is robust and captured the important patterns in 
monthly data. 

Table 10: Granger causality test results using VAR(5) fit on monthly data 

Target Series Input Series 𝑝-value for Granger causality 

CO2 levels CO2 levels 0 

 Global temperatures 9.441E-7 
Global temperatures CO2 levels 3.049E-9 

 Global temperatures 0 

We also checked that changing the sampling frequency does not greatly change the Granger casual relationships we 
find in the model. 

The results of our Granger causality tests show that CO2 levels still Granger-cause global temperature and tempera-
ture still Granger-causes CO2 levels. As well, the Granger casual strength from CO2 levels to temperature is still 
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significantly stronger compared to the reverse direction. Therefore, we verified that the Granger causal relationships 
found are robust and are preserved with a finer sampling frequency. 

7.4.3 Sensitivity Analysis with Other Factors 

When our model was built, we only used data on CO2 levels and global land-ocean temperatures. However, other 
factors are also useful in forecasting CO2 levels and global temperatures and would provide more information. We 
therefore added in monthly data from 2001 to 2022 obtained from NOAA[10] on three important greenhouse gases, 
CH4, N2O, and SF6, and fit a VAR(5) on the data to verify that the inclusion of new variables does not greatly change 
our model prediction. Using the model fit on the data with the new variables, we found that in 2029, the CO2 level 
was predicted to be 436.92 ppm, which is very close to the 438.8 ppm predicted by the model fit on the original data, 
and temperature was predicted to be 1.19°C, which is very close to the 1.2°C predicted by the model fit on original 
yearly data. Therefore, because the predictions by the model fit on the data with the new variables and the model fit 
on the original data are similar, we determined that the inclusion of new variables does not greatly change the pre-
diction, and the predictions made by the model using only CO2 levels and global temperatures are accurate and 
capture most of the information provided by the new factors. 

We also checked how the inclusion of new factors changed the Granger casual relationships we find in the model. 

Table 11: Granger causality test results using VAR(5) fit on data with new variables 

Output Series Input Series 𝑝-value for Granger causality 

CO2 levels CO2 levels 0 
 Global temperatures 0 

Global temperatures CO2 levels 0 
 Global temperatures 0 

The results of our Granger causality tests show that CO2 levels still Granger-cause global temperature and tempera-
ture still Granger-causes CO2 levels. However, the Granger casual strength from CO2 levels to temperature is now 
the same as the casual strength in the reverse direction (all p-values are extremely small shown as 0). We therefore 
determined that the bi-directional Granger causal relationship between CO2 levels and temperature remains after the 
inclusion of new factors. 

7.5 Model Strengths and Weaknesses 

Model Strengths 

1. The VAR(5) model can account for non-stationary patterns. 
2. The VAR(5) model can predict multiple time series variables using a single model. 
3. The VAR(5) model can capture temporal relationships between time series. 
4. The VAR(5) model typically has powerful short-term prediction abilities. 
5. The VAR(5) model is easily implemented, and future predictions and confidence levels can be easily obtained. 
6. The sensitivity analysis of the model demonstrates the effectiveness of the model under different data sizes, 

proving the robustness of the model. As well, the predictions of the model are robust and are not greatly 
changed by inclusion of monthly data or new factors. 
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7. The sensitivity analysis of the model demonstrates that Granger causal relationships found in the model are 
robust and are not affected by the sampling frequency. As well, strong Granger causal relationships are not 
affected by data size and the inclusion of new factors does not affect the bi-directional Granger causal rela-
tionship between CO2 levels and temperature. 

Model Weaknesses 

1. The VAR(5) model loses accuracy for long term forecasting because the model is dependent on the accuracy 
of previous values. 

2. The forecasting accuracy of the VAR(5) model depends on the reliability of historical data and on future 
conditions being similar to the conditions at the time of the data used. When there are drastic changes in the 
pattern of CO2 levels or land-ocean temperatures, the model’s prediction will likely not be reliable. 

3. Granger causality does not mean true causality and does not address hidden variables. 
4. The amount of data used to fit the model, 63 time points, is relatively small. 
5. The model does not consider other factors besides CO2 levels and global temperatures. Other variables like 

volcanoes and solar radiation that influence CO2 levels and temperature would provide more information and 
increase forecasting accuracy. 

6. Our current model assumes that the relationship between CO2 levels and global temperatures stays the same 
over time. However, this relationship could be subject to change. For example, the relationship between CO2 
levels and global temperatures during the pre-industrial period was different than the relationship during the 
post-industrial period. Our current model can be extended to model such a relationship if given more data. 

8 Conclusion 

To better understand future global warming trends, we created several models to predict CO2 concentration levels 
and global land-ocean temperatures. 

We first analyzed the CO2 levels data and discovered that the March 2003 increase of CO2 resulted in a larger 
increase than observed over any previous 10-year period instead of the March 2004 increase that the NOAA claimed. 
We then fit four different models, Holt’s linear trend, ARI(8, 2), IMA(2, 8), and ARIMA(3, 2, 3), on annual March 
averages of CO2 levels and used these models to forecast the future CO2 levels up to 2100. Holt’s linear trend pre-
dicted that CO2 levels will reach 685 ppm by 2132, ARI(8, 2) predicted by 2091, IMA(2, 8) predicted by 2082, and 
ARIMA(3, 2, 3) by 2083. Our results disagreed with the OECD’s claim that the CO2 concentration level will reach 
685 ppm by 2050. After comparing the model performance statistics of all four models, the best model for describing 
patterns in the CO2 levels was the ARI(8,2) model and hence we think this model is the most accurate one. Our 
sensitivity analysis verified that the ARI model is robust and model performance is not greatly affected by the amount 
of data or using data from different months. 

In order to forecast future global temperatures, we then fit an ARIMA(3, 1, 3) model on global annual mean temper-
ature changes. ARIMA(3, 1, 3) forecasted that the global average temperature will change by 1.25°C in 2038, 1.5°C 
in 2052, and 2°C in 2081 when compared to the average temperature from 1951 to 1980. 

Finally, to investigate the relationship between CO2 and temperature, we first examined Pearson's correlation and 
determined that there’s a strong positive relationship between CO2 levels and temperature. We then used VAR(5) to 
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model the temporal causal relationship between CO2 concentration levels and global temperatures. After performing 
Granger causality tests with our VAR model, we found that there is a strong Granger causal relationship from CO2 
levels to global temperatures and a weak Granger causal relationship from global temperatures to CO2 levels. 
VAR(5) forecasts that in 2050, the CO2 level will be 512.85 ppm and the global temperature will be 2.01°C. We 
determined that all predictions up to 2100 from VAR(5)  should be reliable because of the narrow width of corre-
sponding 95% confidence intervals. The concerns of our VAR(5) model include a small training data size and that 
other factors besides temperature and CO2 levels were not considered in the model. To test the seriousness of these 
concerns and the robustness of the VAR model, we performed several sensitivity analyses. We verified that the 
model is effective with smaller data sizes in terms of forecasting and identifying Granger causal relationships. In 
addition, the predictions of the model and strong Granger causal relationships are robust and not greatly affected by 
changing the sampling frequency to monthly or the inclusion of new factors such as CH4, N2O, and SF6. 

All our analysis and model results confirm that CO2 levels and global temperatures are steadily increasing and verify 
that CO2 levels greatly influence global warming. To protect the environment and lessen global warming, CO2 emis-
sions should be greatly reduced and new policies to reduce emissions should be enacted, such as restricting the use 
of fossil fuels. 
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